Systemic Administration and Targeted Radiosensitization via Chemically Synthetic Aptamer-siRNA Chimeras in Human Tumor Xenografts.

نویسندگان

  • Xiaohua Ni
  • Yonggang Zhang
  • Kenji Zennami
  • Mark Castanares
  • Amarnath Mukherjee
  • Raju R Raval
  • Haoming Zhou
  • Theodore L DeWeese
  • Shawn E Lupold
چکیده

Radiation therapy is a highly effective tool for treating all stages of prostate cancer, from curative approaches in localized disease to palliative care and enhanced survival for patients with distant bone metastases. The therapeutic index of these approaches may be enhanced with targeted radiation-sensitizing agents. Aptamers are promising nucleic acid delivery agents for short interfering RNAs (siRNA) and short hairpin RNAs (shRNA). We have previously developed a radiation-sensitizing RNA aptamer-shRNA chimera that selectively delivers DNA-PK targeting shRNAs to prostate-specific membrane antigen (PSMA) positive cells in the absence of transfection reagents. Although these chimera are effective, their synthesis requires in vitro transcription and their evaluation was limited to intratumoral administration. Here, we have developed a second-generation aptamer-siRNA chimera that can be assembled through the annealing of three separate chemically synthesized components. The resulting chimera knocked down DNA-PK in PSMA-positive prostate cancer cells, without the need of additional transfection reagents, and enhanced the efficacy of radiation-mediated cell death. Following intravenous injection, the chimera effectively knocked down DNA-PK in established subcutaneous PSMA-positive tumors. Systemic treatment with these radiation-sensitizing agents selectively enhanced the potency of external beam radiation therapy for established PSMA-positive tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts.

Dose-escalated radiation therapy for localized prostate cancer (PCa) has a clear therapeutic benefit; however, escalated doses may also increase injury to noncancerous tissues. Radiosensitizing agents can improve ionizing radiation (IR) potency, but without targeted delivery, these agents will also sensitize surrounding normal tissues. Here we describe the development of prostate-targeted RNAi ...

متن کامل

Targeted systemic delivery of a therapeutic siRNA with a multifunctional carrier controls tumor proliferation in mice.

In this study, novel peptide-targeted delivery systems were developed for systemic and targeted delivery of therapeutic siRNA based on a multifunctional carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinylhistinyl-1-aminoethyl)propionamide] (EHCO), which showed pH-sensitive amphiphilic cell membrane disruption. EHCO formed stable nanoparticles with siRNA. Targeted siRNA delivery systems were rea...

متن کامل

Aptamer-siRNA Chimeras: Discovery, Progress, and Future Prospects

Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery tools for many therapeutic oligonucleotide-based drugs, including small interfering RNAs (siRNAs). In this review, we summarize recent progress in the aptamer selection technology that has made possible the identification of cell-specific, cell-internalizing aptamers for the cell-targeted delivery of therapeutic oligon...

متن کامل

Radiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles

Introduction: A main choice for cancer treatment is radiotherapy. But, the radiotherapy disadvantage is damages caused by radiation given to normal tissues/organs surrounding cancer. One way to avoid this is via increasing radiosensitization of cancer cells. Gold nanoparticles (GNPs) have shown sensitizing effect on cancer cells by enhancing their absorbed dose. Unlike earlier ...

متن کامل

Radiosensitization of tumor-targeted radioimmunotherapy with prolonged topotecan infusion in human breast cancer xenografts.

Clinical radioimmunotherapy (RIT) of solid tumors holds great promise, but as yet has been unable to deliver tumoricidal radiation doses without unacceptable toxicity. Our experimental approach aims to potentiate the therapeutic action of radioimmunoconjugates at the tumor site and thus improve the efficacy of RIT by combination with other treatment modalities. The topoisomerase I inhibitors ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 14 12  شماره 

صفحات  -

تاریخ انتشار 2015